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Introduction

® Hydrogen is considered as a promising fuel of the future

® |t is listed as a primary energy source in the energy development strategy in many developed
countries

® Plasma technologies on hydrocarbon reforming to generate hydrogen has been gradually
attracting attention (no expensive and impurity vulnerable catalysts)

® Hydrogen production reactions from ethanol:

C,H:OH + 1,0, — 3H, + 2CO (partial oxydation)
C,H:OH + CO, — 3H, + 3CO (dry reforming)

C,H;OH + 3H,0 — 6H, + 2CO, (steam reforming)
C,HOH + H,O0 — 4H, + 2CO (steam reforming)
C,H:OH — 3H, + CO + C (thermal decomposition)

® |Investigation concerns microwave (915 MHz, 2.45 GHz) atmospheric pressure plasma source
(MPS) for hydrogen production via ethanol conversion

® The main objective of this investigation is to obtain the knowledge about processes during
microwave plasma conversion of liquids hydrocarbons (ethanol) as a hydrogen source
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Selection of microwave plasma source

Microwave plasma sources (MPSs) for gas processing

surface-wave-discharge MPSs:
® coaxial-line-supplied, called surfatrons
® waveguide-supplied, called surfaguides

nozzle-type MPSs:
® coaxial-line-supplied coaxial-line-based (low gas flow rate, several NL/min)
® waveguide-supplied coaxial-line-based (low and high gas flow rate, several thousands NL/h)

nozzleless MPSs:
® waveguide-supplied coaxial-line-based (with or without an inner dielectric tube)
® wavequide-supplied metal-cylinder-based (with or without an inner dielectric tube)
® waveguide-supplied resonant-cavity-based

plasma-sheet MPSs:
® coaxial-line-supplied strip-line-based
® waveguide-supplied

microwave microplasma sources (MmPSSs)
® antenna type
® coaxial-line-based

Mizeraczyk et al., Studies of atmospheric-pressure microwave plasmas used for gas processing, Nukleonika 2012 (57), 241-247 4
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Waveguide-supplied metal-cylinder-based MPS
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Experimental setup
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MPS type

® Waveguide-supplied metal-cylinder-based MPS

Processes

®  Thermal decomposition of ethanol
C,H:OH - 3H,+ CO +C

®  Dry reforming of ethanol
C,H:OH + CO, — 3H, + 3CO

®  Steam reforming of ethanol
C,H:OH + 3H,0 — 6H, + 2CO,
C,H:OH + H,0 — 4H, + 2CO

Constant parameters
® Pressure: atmospheric
® Catalyst: no catalyst

Variable parameters

® Microwave frequency: 915 MHz, 2.45 GHz
® Absorbed microwave power (2 — 5.5 kW)

® Working gases flow rate: up to 3900 NL/h
®* C,H;OH addition

Measured parameters

®* Emission spectra of plasma in range of 300 —
600 nm

*Percentage  concentration of  following
components at the output of the MPS: H,, Ar,
O,, N,, CO, CO,, CH,, CH,, C,H,, C,Hg,
C,H:OH

Calculated parameters

® Hydrogen production rate in NL(H,)/h

® Energy vyield of hydrogen production in
NL(H,)/kWh

® Total ethanol conversion

® Conversion into hydrogen

10



EmHyTeC 2014, Taormina, Italy, 9-12 December 2014

Hydrogen production effectiveness parameters

Hydrogen production rate in NL(H,)/h, shows how many litters of hydrogen is produced per
unit of time (one hour).

Energy yield of hydrogen production in NL(H,)/kWh is define as a ratio of the hydrogen
production rate to absorbed microwave power in kW. Energy yield describes the amount of
litters of hydrogen produced using 1 kWh of energy.

Total ethanol conversion degree is given by
[(CZHSOH)converted / (CZHSOH)initial X 100%]’

where (C,H:OH).ii5 IS the total mass of ethanol and (C,H;OH)_,nverteq 1S the converted mass of
etanol.

Conversion into hydrogen is given by

[moles of H, / 3* moles of C,H:OH X 100%] or
[moles of H, / (3* moles of C,H:OH + moles of H,0O) X 100%] (for steam reforming)

where H, is the produced hydrogen, C,H;OH is the ethanol and H,O is the water used for
hydrogen production.

11
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Visualization of the plasma flame

without C,H;OH with C,H:OH without C,H;OH with C,H:OH

70 mm 55 mm

Front view of the of N, plasma with and Front view of the CO, plasma with and
without ethanol vapor addition. 2.45 GHz without ethanol vapor addition. 2.45 GHz
plasma system, absorbed microwave power plasma system, absorbed microwave power
P, - 2 KW, working gas flow rate - 2700 NL/h. P, - 2 KW, working gas flow rate - 2700 NL/h.

12



EmHyTeC 2014, Taormina, Italy, 9-12 December 2014

Spectroscopic diagnostics of plasma (rotational temperatures)
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Comparison of the measured and simulated emission spectra of plasma. Absorbed microwave

power P, - 4 kW. 15 mm below the waveguide bottom. 13



Plasma spectroscopic diagnostics

without C,H:OH
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with 0.8 kg C,HsOH

1.04 1.0+
N, second
0.8 positive system 0.8+
(low intensity)
3: 0.61 "/\12+ first negative system c:é 0.61 m CN ‘Violet N, first positive system
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at 15 mm and P, — 2kW ranged (dep. P, & location) at 15 mm and P, — 2kW | ranged (dep. P, & location)
T, N,+ 5500 K 4500 — 6000 K T, CN 5400 K 4000 — 6000 K
OH 5200 K 3300 - 5500 K C, 3600 K 3500 - 4600 K

Measured emission spectra of N, plasma and rotational temperatures with and without
ethanol vapor addition. 2.45 GHz plasma system. Absorbed microwave power P, - 4 kW.
Working gas flow rate - 2700 NL/h.
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Thermal decomposition of ethanol
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Best results: up to 210 NL(H,)/h [17.5 g(H,)/h] and up to 77 NL(H,)/kWh [6.3 g(H,)/kWh]

Ethanol conversion: 100%

Comparison of the hydrogen production rate and energy yield as a function of absorbed
microwave power for Ar, N, and CO, plasmas in 2.45 GHz system.

Hrycak et al., Application of atmospheric pressure microwave plasma source for hydrogen production from ethanol, Int J Hydrogen Energy (2014) 39, 14184-14190
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Thermal decomposition of ethanol

Hydrogen production rate [NL (H,) h']

2.45 GHz; C,H:OH added to swirl flow
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Best results: up to 660 NL(H,)/h [54,8 g(H,)/h] and up to 170 NL(H,)/kWh [14.1 g(H,)/kWh]
Ethanol conversion: up to 99.9%

Hydrogen production rate and energy yield for N, plasma as a function of absorbed
microwave power (on the left) and as a function of C,H;OH flow rate (on the right).

Hrycak et al., Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure, Open Chem. (2015) 13, 1-8

Energy yield [NL (H,) kWh™]
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Thermal decomposition of ethanol
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2.45 GHz; C,H:OH added to axial flow
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Best results: up to 902 NL(H,)/h [75 g(H,)/h] and up to 225 NL(H,)/kWh [18.7 g(H,)/kWh]

Ethanol conversion into hydrogen: up to 82%
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Hydrogen production rate and energy yield for N, plasma as a function of absorbed
microwave power (on the left) and as a function of C,H;OH flow rate (on the right).
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Ethanol steam reforming

Hydrogen production rate [NL (H,) h']

2.45 GHz; C,H:OH + H,0 added to axial flow
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Best results: up to 768 NL(H,)/h [63.9 g(H,)/h] and up to 262 NL(H,)/kWh [21.8 g(H,)/h]
(50 % C,H;OH + 50% H,0) conversion into hydrogen: up to 100%

Hydrogen production rate and energy yield for N, plasma as a function of absorbed
microwave power (on the left) and as a function of (C,H;:OH+H,0O) flow rate (on the right).
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Ethanol dry reforming
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Hydrogen production rate [NL (H,) h™']

2.45 GHz; C,H:OH added to axial flow
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Best results: up to 419 NL(H,)/h [34.8 g(H,)/h] and up to 122 NL(H,)/kWh [10.2 g(H,)/kWh]
Ethanol conversion into hydrogen: up to 24 %

Hydrogen production rate and energy yield for N, plasma as a function of absorbed
microwave power (on the left) and as a function of C,H;OH flow rate (on the right).
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Thermal decomposition of ethanol
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915 MHz; C,H;OH added to axial flow
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Comparison of the hydrogen production rate
and energy yield for different microwave
systems. N, flow rate: 2700 NL/h, C,H;OH:
0.8 kg/h, P,,.: 4kW:

Hydrogen .
production rate Energy yield
NL(H,)h NL(H,)/kWh-t
[g(Hy)h] [g(Ho)/kWh1]
643 160
2.45 GHz g o
680 170
Sto Mz [56.5] [14.1]

Problem with soot
separator overheating in
915 MHz system

20



EmHyTeC 2014, Taormina, ltaly, 9-12 December 2014

Thermal decomposition of ethanol

915 MHz; C,H;OH added to axial flow
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Hydrogen production rate and energy yield
as a function of absorbed microwave power
for N, plasma.
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Thermal decomposition of ethanol
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915 MHz; C,H;OH added to axial flow

Comparison of the hydrogen production rate
and energy vyield for systems without and
with outgas cooling. N, flow rate: 2700
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as a function of absorbed microwave power
for N, plasma.
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Thermal decomposition of ethanol

915 MHz; C,H;OH added to axial flow
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Best results: up to 1150 NL(H,)/h [95.7 g(H,)/h] and up to 267 NL(H,)/kWh [22.2 g(H,)/kWh]
Ethanol conversion into hydrogen: up to 100%
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Hydrogen production rate and energy yield for N, plasma as a function of C,H:OH flow
rate for N, flow rate 2700 NL/h (on the left) and 3900 NL/h (on the right).
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Ethanol conversion into hydrogen

Hydrogen production from 11 of ethanol [g]
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plasma as a function of C,H:OH flow rate (on the left) and as a function of absorbed
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Hydrogen production - the best results
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Conventional and plasma methods of hydrogen production

Production method

Initial composition

Energy yield
g(H,)/kWh

Reference

Conventional steam
reforming of methane
(catalyst)

CH, +H,0O+ air

60 Established
Industrial Process

Katie Randolph, U.S. DOE, Hydrogen Production,
2013 Annual Merit Review and Peer Evaluation
Meeting, May 16, 2013

Katie Randolph, U.S. DOE, Hydrogen Production,

Water electrolysis H,O 20 - 40 2013 Annual Merit Review and Peer Evaluation
Meeting, May 16, 2013

Eleciron beam radiolysis | GHa*0 36 Low Tomperatire Plasia Chemisty. 196, 2002

Dielectric barrier discharge CH,+air 6.7 E;/Iétgf i?;zyBégF”igtlr’uséléj
CH,+CO, / H,0 0.5 .
Dielectric barrier discharge cﬁiﬁ Hoﬁ%%jﬁ o 2:3 Journal of Piwse?r;nc;lejrr]ct;gse 32'5, 140, 2007
Gliding arc CHy+H,O+air 40 J. Phys. é':hip(;ﬁr;nrisé.l .33?3;98, 2001
Gid arc spray Ar+CH,OH 176 " i Eng. Chom. Res., 50, 6466, 2011

Plasmatron with catalyst CH,+H,O+air 225 Int. J. Hyd:_c;gBerr?Er?:rrgye;g,l.1157, 2000

Coaxiakline-based MPS CHN, 1 Int. JMHi/?jsrg]gS; gﬁgrz)cg%\/,\lﬁi4e7t3?|'2013
Metal-cylinder-based MPS CH,+CO,+H,0 42.9 M. Jasinski, D. Czylkowski et al., to be published
Metal-cylinder-based MPS N,+C,H;OH+H,0 22.2 present work
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Microwave plasma module for hydrogen production - prototype
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Best results: up to 2300 NL(H,)/h [192g(H,)/h] and up to 515 NL(H,)/kWh [42.9 g(H,)/kWh]

Jasinski et al., Atmospheric pressure microwave plasma source for hydrogen production, Int J Hydrogen Energy (2013) 38, 11473-11483
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Summary and conclusions

The investigations showed advantages of using the metal-cylinder-based MPS in terms of the
performance and hydrogen production rate and energy yield

The metal-cylinder-based MPS can operate in different gases (nitrogen, argon, carbon
dioxide, methane) and mixtures with high gas flow rates at atmospheric pressure and
microwave power of a few Kw

The spectroscopic measurements showed that the temperature of heavy species (assumed to
be close to gas temperature) was up to 6000 K (for N, plasma without C,H:OH) which makes
the MPS an attractive tool for hydrogen production via gaseous and liquid hydrocarbon
conversion

The axial method of introduction of the ethanol into the plasma solved the problem with
microwaves penetration and damages of the quartz tube (resulting from soot production) and
allowed to improve the production of hydrogen efficiency parameters

The best achieved results of hydrogen production rate and energy yield were 1150 NL(H,)/h
and 267 NL(H,)/kWh, respectively

Conversion into hydrogen can rich up to 100 %.

The metal-cylinder-based MPS has a high potential for hydrogen production via other liquid
hydrocarbons conversion
28
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Thank you for your attention!
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